
A Tool for Formal Verification of Nonlinear Inequalities

Alexey Solovyev

August 31, 2017

Contents

1 Introduction 2

2 Installation 2

3 Quick Start 3

4 Verification Functions 4

5 Global Options 6

6 Additional Examples 7

7 Test Results 9

1



References

[1] HOL Light home page
http://www.cl.cam.ac.uk/~jrh13/hol-light

[2] HOL Light repository
https://github.com/jrh13/hol-light

[3] HOL Light tutorial
http://www.cl.cam.ac.uk/~jrh13/hol-light/tutorial_220.pdf

[4] The Flyspeck project
https://github.com/flyspeck/flyspeck

[5] César Muñoz and Anthony Narkawicz, Formalization of a Representation of Bernstein
Polynomials and Applications to Global Optimization, Journal of Automated Reasoning,
DOI: 10.1007/s10817-012-9256-3
http://shemesh.larc.nasa.gov/people/cam/Bernstein/

1 Introduction

This document describes a tool for verification of nonlinear inequalities in HOL Light proof
assistant [1, 3]. This tool was developed as a part of the Flyspeck project (a formal proof
of the Kepler conjecture) [4]. The tool is capable to verify multivariate nonlinear strict
inequalities on rectangular domains. More specifically, the tool can handle inequalities in
the form

∀x ∈ D =⇒ f(x) < g(x),

where D = {(x1, . . . , xn) | ai ≤ xi ≤ bi} and f , g are functions which may include all usual
arithmetic operations, square roots, arccosines, and arctangents. The maximal number of
variables is 8. Future releases of the tool will include all elementary functions and will have
no restriction on the number of variables. Moreover, it will be possible to verify inequalities
on non-rectangular domains.

Internally, the tool uses interval arithmetic with Taylor approximations (with second-order
error terms).

The document is organized as follows. The next section describes the installation process.
Then a quick introduction of tool functions is presented. After that, a more detailed de-
scription of tool functions is given and special options are described. The last two sections
describe several examples and test cases.

2 Installation

First of all, if you don’t have OCaml and HOL Light installed, then you need to install them.
The verification tool was tested with Ocaml 3.09.3 and Ocaml 3.12.1 and with one of the
latest versions of HOL Light (r149 in the HOL Light repository). HOL Light installation
instructions can be found in John Harrison’s HOL Light tutorial [3].

2

http://www.cl.cam.ac.uk/~jrh13/hol-light
https://github.com/jrh13/hol-light
http://www.cl.cam.ac.uk/~jrh13/hol-light/tutorial_220.pdf
https://github.com/flyspeck/flyspeck
http://shemesh.larc.nasa.gov/people/cam/Bernstein/


Alternatively, one can download and run the following script written by Alex Krauss: https:
//bitbucket.org/akrauss/hol-light-workbench. This script will download and install
the latest version of HOL Light and other necessary programs.

The installation of the tool for verification of nonlinear inequalities is very simple. Download
the distribution from
http://code.google.com/p/flyspeck/downloads/list

or get the latest version from the Flyspeck repository with the shell command
svn co http://flyspeck.googlecode.com/svn/trunk/formal_ineqs

The tool can be placed in any directory on your computer. It is important to inform HOL
Light about tool’s location. It can be done with the following OCaml command:

load_path := "path to the tool directory" :: !load_path;;

After the path is set, the tool can be loaded with the command

needs "verifier/m_verifier_main.hl";;

The tool loads the standard HOL Light library Multivariate/realanalysis.ml. The
loading process of this library could take pretty long time, so it is recommended to use a
checkpointed version of HOL Light with preloaded multivariate analysis libraries.

Before loading the tool, it is also possible to change some global options. These options are
described in section 5.

3 Quick Start

The polynomial inequality

− 1√
3
≤ x ≤

√
2, −

√
π ≤ y ≤ 1 =⇒ x2y − xy4 + y6 + x4 − 7 > −7.17995

can be verified with the following script

(* make sure that load_path contains the path to formal_ineqs *)

needs "verifier/m_verifier_main.hl";;

open M_verifier_main;;

let ineq =

‘-- &1 / sqrt(&3) <= x /\ x <= sqrt(&2) /\

-- sqrt(pi) <= y /\ y <= &1

==> x pow 2 * y - x * y pow 4 + y pow 6 - &7 + x pow 4 > -- #7.17995‘;;

let th, stats = verify_ineq default_params 5 ineq;;

The first parameter of the verification function verify_ineq contains verification options.
We use default values given by the constant default_params. Available options are de-
scribed in section 4.

The second parameter specifies the precision of formal floating point operations. This pa-
rameter determines the maximal number of significant digits of any result returned by a
formal floating point operation. Here, digits are not decimal. Internally all natural numbers

3

https://bitbucket.org/akrauss/hol-light-workbench
https://bitbucket.org/akrauss/hol-light-workbench
http://code.google.com/p/flyspeck/downloads/list


are represented using a fixed base (see section 5 for more details). This base is relatively
large (the default value is 100) to speed up arithmetic operations. Actual precision of formal
floating point operations depends on the precision parameter and on the base of the internal
representation of natural numbers. If the base value is 100 and the precision parameter is
5 as in the example above, then the precision of formal floating point operations is 10 deci-
mal digits: 1005 = 1010. Note that the verification of the example will fail if the precision
parameter is 4 or less. On the other hand, if the precision parameter is 10, the verification
will succeed but it will take a little more time.

The third parameter is the inequality itself given as a HOL Light term. The format
of this term is simple: it is an implication with bounds of variables in the antecedent
and an inequality in the consequent. The bounds of all variables should be in the form
a constant expression <= x or x <= a constant expression. For each variable, upper and
lower bounds must be given. The inequality must be a strict inequality (< or >). The
inequality may include sqrt, atn, and acs functions. The constant pi (π) is also allowed.

The verification function returns a HOL Light theorem and a record with some verification
information which includes verification time.

4 Verification Functions

The main verification function verify_ineq is contained in M_verifier_main module de-
fined in verifier/m_verifier_main.hl. The function has 3 arguments and its type is

verify_ineq : verification_parameters -> int -> term -> thm * verification_stats

The first parameter contains verification options defined in the following record

type verification_parameters =

{

(* If true, then monotonicity properties can be used *)

(* to reduce the dimension of a problem *)

allow_derivatives : bool;

(* If true, then convexity can be used *)

(* to reduce the dimension of a problem *)

convex_flag : bool;

(* If true, then verification on internal subdomains can be skipped *)

(* for a monotone function *)

mono_pass_flag : bool;

(* If true, then raw interval arithmetic can be used *)

(* (without Taylor approximations) *)

raw_intervals_flag : bool;

(* If true, then an informal procedure is used to determine *)

(* the optimal precision for the formal verification *)

adaptive_precision : bool;

(* This parameter might be used in cases when the certificate search *)

(* procedure returns a wrong result due to rounding errors *)

(* (this parameter will be eliminated when the search procedure is corrected) *)

eps : float;

};;

4



A detailed description of these parameter is omitted in this document. In most cases, it is
enough to use the constant default_params which turns all verification flags on and sets
eps = 0. In rare cases, it is necessary to adjust eps to get a result. This can be done with
the command

verify_ineq {default_params with eps = 1e-10} 5 ineq_tm;;

The second parameter of the verification function specifies the precision of formal floating
point operations. This parameter determines the maximal number of significant digits of any
result returned by a formal floating point operation. Here, digits are not decimal. Internally
all natural numbers are represented using a fixed base (see section 5 for more details). This
base is relatively large (the default value is 100) to speed up arithmetic operations. Actual
precision of formal floating point operations depends on the precision parameter and on the
base of the internal representation of natural numbers. In many cases, if the verification
function fails, it is enough to increase the precision parameter to get a result.

The third parameter of the verification function is a HOL Light term which specifies an
inequality itself. The format of this term is the following:

bounds of variables ==> an inequality

The bounds of all variables should be in the form a constant expression <= x or x <=
a constant expression. For each variable, upper and lower bounds must be provided. The
order in which the bounds are given is irrelevant. Bounds of variables may be connected
with /\ or with ==>. The inequality must be a strict inequality (< or >). The inequality
may include sqrt, atn, and acs functions. The constant pi (π) is also allowed.

The verification function returns a theorem and some verification information defined in the
record

type verification_stats =

{

total_time : float;

formal_verification_time : float;

certificate : Verifier.certificate_stats;

};;

The field total_time contains total verification time. The field formal_verification_time

contains time taken by the formal verification procedure only (this time doesn’t include
time for constructing a solution certificate and for other preparations). The last field
certificate contains information about a solution certificate.

The conclusion of the returned theorem is not exactly the same as the third parameter of the
verification function: the order of bounds of variables may be altered and variables which
are not used in the inequality are eliminated. For example, commands

let th1, _ = verify_ineq default_params 3

‘&1 <= y /\ y <= &2 /\ &1 <= x /\ x <= &3 ==> x + y < &6‘;;

let th2, _ = verify_ineq default_params 3

‘&1 <= y /\ y <= &2 /\ &1 <= x /\ x <= &3 ==> y < &3‘;;

return

5



th1 = |- (&1 <= x /\ x <= &3) /\ &1 <= y /\ y <= &2 ==> x + y < &6

th2 = |- &1 <= y /\ y <= &2 ==> y < &3

5 Global Options

The options which affect the arithmetic operations with natural and floating point numbers
must be set before the verification tool is loaded. After the verification tool is loaded, arith-
metic options may not be changed. To set arithmetic options, load the file arith_options.hl
located in the root directory of the tool. The available options are listed below.

base Determines the base for representing natural numbers. Default HOL Light represen-
tation of natural numbers is binary (i.e., its base is 2). A higher base increases speed
of arithmetic operations but it also requires more memory to remember additional
theorems. The default value of the base is 100. To set a new base, use the command

Arith_options.base := 200;;

min exp Determines the minimal exponent in the representation of floating point numbers.
Each floating point number is represented as a triple (s, n, e) where s is a boolean
value which determines the sign of the number, n and e are natural numbers which
represent the mantissa and the exponent. The value corresponding to (s, n, e) is given
by

f = (−1)if s then 1 else 0 × n× be−min exp

where b is the base of the representation of natural numbers.

cached If this value is true, then results of all natural number operations are cached. The
default value is true.

float cached If this value is true, then results of all floating point operations are cached. The default
value is true.

init cache size Determines the initial size of the cache for results of arithmetic operations. The default
value is 10000.

max cache size Determines the maximal size of the cache for results of arithmetic operations. The
default value is 20000. Note: each cached operation has its own cache.

The file verifier_options.hl contains the option info_print_level which controls the
amount of information printed by a verification process. This option can be changed at any
time:

Verifier_options.info_print_level := 0;;

Possible values are: 0 (no information is printed); 1 (all essential information is printed);
2 (all information is printed). The default value is 1.

The next example shows how to change default options:

(* The arithmetic options must be set before loading the verification tool *)

needs "arith_options.hl";;

6



(* Increase the arithmetic base *)

Arith_options.base := 200;;

(* Increase the cache size *)

Arith_options.max_cache_size = 40000;;

(* Load the verification tool *)

needs "verifier/m_verifier_main.hl";;

(* The verification option can be changed at any time *)

Verifier_options.info_print_level := 2;;

open M_verifier_main;;

6 Additional Examples

The verification tool distribution contains several example files. The file examples_poly.hl
contains polynomial inequalities from the paper [5]. The command

needs "examples_poly.hl";;

will load this file and run all polynomial inequality tests. To run all tests again, type
run_tests();;

To run a specific test, type run_{test_name}();; where {test_name} is one of the follow-
ing: schwefel, rd, caprasse, lv, butcher, magnetism, heart.

Here is the list of all examples.

schwefel

−5.8806× 10−10 < (x1 − x22)2 + (x2 − 1)2 + (x1 − x23)2 + (x3 − 1)2

(x1, x2, x3) ∈ [(−10,−10,−10), (10, 10, 10)]

rd

−36.7126907 < −x1 + 2x2 − x3 − 0.835634534x2(1 + x2)

(x1, x2, x3) ∈ [(−5,−5,−5), (5, 5, 5)]

caprasse

−3.1801 < −x1x33 + 4x2x
2
3x4 + 4x1x3x

2
4 + 2x2x

3
4 + 4x1x3 + 4x23 − 10x2x4 − 10x24 + 2

(x1, x2, x3, x4) ∈ [(−0.5,−0.5,−0.5,−0.5), (0.5, 0.5, 0.5, 0.5)]

lv

−20.801 < x1x
2
2 + x1x

2
3 + x1x

2
4 − 1.1x1 + 1

(x1, x2, x3, x4) ∈ [(−2,−2,−2,−2), (2, 2, 2, 2)]

7



butcher

−1.44 < x6x
2
2 + x5x

2
3 − x1x24 + x24 − 1

3x1 + 4
3x4

(x1, x2, x3, x4, x5, x6) ∈ [(−1,−0.1,−0.1,−1,−0.1,−0.1), (0, 0.9, 0.5,−0.1,−0.05,−0.03)]

magnetism

−0.25001 < x21 + 2x22 + 2x23 + 2x24 + 2x25 + 2x26 + 2x27 − x1
(x1, x2, x3, x4, x5, x6, x7) ∈ [(−1,−1,−1,−1,−1,−1,−1), (1, 1, 1, 1, 1, 1, 1)]

heart

− 1.7435 < −x1x36 + 3x1x6x
2
7 − x3x37 + 3x3x7x

2
6 − x2x35 + 3x2x5x

2
8 − x4x38 + 3x4x8x

2
5 − 0.9563453

(x1, x2, x3, x4, x5, x6, x7, x8) ∈ [(−0.1, 0.4,−0.7,−0.7, 0.1,−0.1,−0.3,−1.1),

(0.4, 1,−0.4, 0.4, 0.2, 0.2, 1.1,−0.3)]

The file examples_flyspeck.hl contains some inequalities from the Flyspeck project [4].
The command

needs "examples_flyspeck.hl";;

will load this file and run some easy inequality tests. To rerun these tests, use the command
test_easy();;. To run more difficult tests, type test_medium();; or test_hard();;.
(Warning: medium tests require about 30 minutes, hard tests require more than 5 hours.)

Some Flyspeck inequalities are listed below.

∆(x1, . . . , x6) = x1x4(−x1 + x2 + x3 − x4 + x5 + x6)

+x2x5(x1 − x2 + x3 + x4 − x5 + x6)

+x3x6(x1 + x2 − x3 + x4 + x5 − x6)

−x2x3x4 − x1x3x5 − x1x2x6 − x4x5x6,

∆4 =
∂∆

∂x4
,

dihx (x1, . . . , x6) =
π

2
− arctan

(
−∆4(x1, . . . , x6)√
4x1∆(x1, . . . , x6)

)
,

dihy (y1, . . . , y6) = dihx (y21 , . . . , y
2
6).

4717061266

∆(x1, x2, x3, x4, x5, x6) > 0, 4 ≤ xi ≤ 6.3504

7067938795

dihx (x1, . . . , x6)− π/2 + 0.46 < 0,

4 ≤ x1,2,3 ≤ 6.3504, x4 = 4, 3.012 ≤ x5,6 ≤ 3.242

3318775219

0 < dihy (y1, . . . , y6)− 1.629 + 0.414(y2 + y3 + y5 + y6 − 8.0)

− 0.763(y4 − 2.52)− 0.315(y1 − 2.0),

2 ≤ yi ≤ 2.52

8



7 Test Results

This section contains time test results for inequalities described in the previous section. All
tests were performed on Intel Core i5, 2.67GHz running Ubuntu 9.10 inside Virtual Box
4.2.0 on a Windows 7 host; the Ocaml version was 3.09.3; the base of arithmetic was 200;
the caching was turned on.

Polynomial inequalities

Inequality ID # variables precision total time (s) formal verification (s)

schwefel 3 5 26.329 19.145
rd 3 5 1.593 0.017
caprasse 4 5 8.057 1.286
lv 4 5 1.875 0.030
butcher 6 5 3.609 0.035
magnetism 7 5 7.007 1.347
heart 8 5 17.298 1.277

Flyspeck inequalities

Inequality ID precision total time (s) formal verification (s)

2485876245a 4 5.530 0.058
4559601669b 4 4.679 0.048
4717061266 4 27.1 0.250
5512912661 4 8.860 0.086
6096597438a 4 0.071 0.071
6843920790 4 2.824 0.076
SDCCMGA b 4 9.012 0.949
TSKAJXY-TADIAMB1 4 75.9 21.2
7067938795 4 431 387
5490182221 4 1726 1533
3318775219 4 17091 15226

1Reduced to a polynomial inequality

9


	Introduction
	Installation
	Quick Start
	Verification Functions
	Global Options
	Additional Examples
	Test Results

