
S-Lang PVM Module Reference

John C. Houck, houck@space.mit.edu Oct 28, 2005

2

Contents

1 Introduction to the PVM Module 5

2 Using the PVM Module 7

3 Examples 9

3.1 Example 1: A Simple Hello World Program . 9

3.1.1 The hello master program . 9

3.1.2 The hello slave program . 11

3.2 Example 2: Using the Master-Slave Interface . 11

3.2.1 The master program . 12

3.2.2 The slave program . 12

4 Master-Slave Function Reference 13

4.1 pvm ms kill . 13

4.2 pvm ms set num processes per host . 13

4.3 pvm ms set debug . 14

4.4 pvm ms slave exit . 14

4.5 pvm ms run slave . 15

4.6 pvm ms run master . 15

4.7 pvm ms add new slave . 16

4.8 pvm ms set message callback . 16

4.9 pvm ms set slave exit failed callback . 17

4.10 pvm ms set slave spawned callback . 18

4.11 pvm ms set idle host callback . 18

4.12 pvm ms set hosts . 19

5 PVM Module Function Reference 21

5.1 pvm send obj . 21

3

4 CONTENTS

5.2 pvm recv obj . 21

5.3 pvm config . 22

5.4 pvm kill . 22

5.5 pvm initsend . 23

5.6 pvm pack . 23

5.7 pvm send . 23

5.8 pvm recv . 24

5.9 pvm unpack . 24

5.10 pvm psend . 25

5.11 pvm addhosts . 25

5.12 pvm delhosts . 25

6 Module Symbols Lacking Documentation 27

Chapter 1

Introduction to the PVM Module

PVM (Parallel Virtual Machine) is a software package which permits a heterogeneous collection of
Unix and/or Windows computers, connected by a network, to be used as a single large parallel
computer. The PVM module provides a S-lang interface to this package. By performing distributed
computations with S-lang one can make better use of available computer resources yet still retain
the advantages of programming in an interpreted language.

This document briefly describes how to use the S-lang interface to PVM. It assumes that the reader
is already familiar with the PVM package itself.

For complete details on obtaining, installing and using the PVM package, see the PVM documen-
tation http://www.csm.ornl.gov/pvm/ . Note that, once the PVM package is properly installed
on your computer, the PVM man pages will provide detailed documentation on all the PVM library
functions.

Although the S-lang PVM module functions often have slightly different interfaces, the differences
are usually minor so the PVM documentation is quite helpful. Because the S-lang interface is not
yet fully documented, it will be necessary to consult the PVM documentation directly to make full
use of the S-lang PVM module.

Because PVM processes require running programs on remote hosts, it is necessary to provide each
host with the full path to the relevant executables. To simplify this process, it may be useful to
create a directory, e.g.$HOME/bin/PVM, on every host and put relevant executables in that directory
so that the same relative path will work on all machines. This PVM path may be specified in the
$HOME/.pvmhosts configuration file; for a detailed description of the contents of this file, see the
pvmd man page.

The usage examples discussed in this manual assume that the PVM has already been initialized by
running a command such as

unix> pvm ~/.pvmhosts

This starts the PVM console and also starts the PVM daemon, pvmd, on each remote host. This
daemon runs all PVM slave processes and handles all communications with the parent process and
the rest of the PVM.

The execution environment of the PVM slave processes is inherited from the corresponding pvmd

5

http://www.csm.ornl.gov/pvm/

6 Chapter 1. Introduction to the PVM Module

process which, in turn, is inherited from the parent process which started the PVM console. However,
it is sometimes useful to configure the environment of the remote pvmd process using a startup script,
$HOME/.pvmprofile. This is a Bourne shell script which, if present, is run when pvmd is started.
For a detailed description of the contents of this file, see the pvmd man page.

Chapter 2

Using the PVM Module

To use the PVM module in a S-lang script, it is first necessary to make the functions in the package
known to the interpreter via

() = evalfile ("pvm");

or, if the application embedding the interpreter supports the require function,

require ("pvm");

may be used. If there is a namespace conflict between symbols in the script and those defined in the
module, it may be necessary to load the PVM package into a namespace, e.g.,

() = evalfile ("pvm", "p");

will place the PVM symbols into a namespace called p.

Once the PVM module has been loaded, the functions it defines may be used in the usual way, e.g.,

require ("pvm");

.

.

variable master_tid = pvm_mytid ();

where pvm mytid is the PVM function which returns the task identifier of the calling process.

7

8 Chapter 2. Using the PVM Module

Chapter 3

Examples

This section presents examples of two alternate methods of using the PVM module. The source
code for these examples is included in the PVM module source code distribution in the examples

subdirectory. The first method uses PVM library routines to manage a simple distributed applica-
tion. The second method uses the higher-level master-slave interface. This interface can provide a
high degree of tolerance to failure of slave machines which proves useful in long-running distributed
applications.

3.1 Example 1: A Simple Hello World Program

In programming language tutorials, the first example is usually a program which simply prints out
a message such as Hello World and then exits. The intent of such a trivial example is to illustrate
all the steps involved in writing and running a program in that language.

To write a Hello World program using the PVM module, we will write two programs, the master
(hello master), and the slave (hello slave). The master process will spawn a slave process on different
host and then wait for a message from that slave process. When the slave runs, it sends a message
to the master, or parent, and then exits. For the purpose of this example, we will assume that the
PVM consists of two hosts, named vex and pirx, and that the slave process will run on pirx.

3.1.1 The hello master program

First, consider the master process, hello master. Conceptually, it must specify the full path to the
slave executable and then send that information to the slave host (pirx). For this example, we
assume that the master and slave executables are in the same directory and that the master process
is started in that directory. With this assumption, we can construct the path to the slave executable
using the getcwd and path concat functions. We then send this information to the slave host using
the pvm spawn function:

path = path_concat (getcwd(), "hello_slave");

slave_tid = pvm_spawn (path, PvmTaskHost, "pirx", 1);

9

10 Chapter 3. Examples

The first argument to pvm spawn specifies the full path to the slave executable. The second argument
is a bit mask specifying options associated with spawning the slave process. The PvmTaskHost option
indicates that the slave process is to be started on a specific host. The third argument gives the
name of the slave host and the last argument indicates how many copies of this process should be
started. The return value of pvm spawn is an array of task identifiers for each of the slave processes;
negative values indicate that an error occurred.

Having spawned the hello slave process on pirx, the master process calls the pvm recv function to
receive a message from the slave.

bufid = pvm_recv (-1, -1);

The first argument to pvm recv specifies the task identifier of the slave process expected to send
the message and the second argument specifies the type of message that is expected. A slave task
identifier -1 means that a message from any slave will be accepted. Similarly, a message identifier
of -1 means that any type of message will be accepted. In this example, we could have specified the
slave task id and the message identifier explicitly:

bufid = pvm_recv (slave_tid, 1);

When a suitable message is received, the contents of the message are stored in a PVM buffer and
pvm recv returns the buffer identifier which may be used by the PVM application to retrieve the
contents of the buffer.

Retrieving the contents of the buffer normally requires knowing the format in which the information
is stored. In this case, because we accepted all types of messages from the slave, we may need to
examine the message buffer to find out what kind of message was actually recieved. The pvm bufinfo

function is used to obtain information about the contents of the buffer.

(,msgid,) = pvm_bufinfo (bufid);

Given the buffer identifier, pvm bufinfo returns the number of bytes, the message identifier and the
task identifer sending the message.

Because we know that the slave process sent a single object of Struct Type, we retrieve it by calling
the pvm recv obj function.

variable obj = pvm_recv_obj();

vmessage ("%s says %s", obj.from, obj.msg);

This function is not part of the PVM package but is a higher level function provided by the PVM

module. It simplifies the process of sending S-lang objects between hosts by handling some of the
bookkeeping required by the lower level PVM interface. Having retrieved a S-lang object from the
message buffer, we can then print out the message. Running hello master, we see:

vex> ./hello_master

pirx says Hello World

Note that before exiting, all PVM processes should call the pvm exit function to inform the pvmd

daemon of the change in PVM status.

3.2. Example 2: Using the Master-Slave Interface 11

pvm_exit();

exit(0);

At this point, the script may exit normally.

3.1.2 The hello slave program

Now, consider the slave process, hello slave. Conceptually, it must first determine the location of its
parent process, then create and send a message to that process.

The task identifier of the parent process is obtained using the pvm parent function.

variable ptid = pvm_parent();

For this example, we will send a message consisting of a S-lang structure with two fields, one
containing the name of the slave host and the other containing the string "Hello World".

We use the pvm send obj function to send this this message because it automatically handles pack-
aging all the separate structure fields into a PVM message buffer and also sends along the structure
field names and data types so that the structure can be automatically re-assembled by the receiving
process. This makes it possible to write code which transparently sends S-lang objects from one
host to another. To create and send the structure:

variable s = struct {msg, from};

s.msg = "Hello World";

s.from = getenv ("HOST");

pvm_send_obj (ptid, 1, s);

The first argument to pvm send obj specifies the task identifier of the destination process, the second
argument is a message identifier which is used to indicate what kind of message has been sent. The
remaining arguments contain the data objects to be included in the message.

Having sent a message to the parent process, the slave process then calls pvm exit to inform the
pvmd daemon that its work is complete. This allows pvmd to notify the parent process that a slave
process has exited. The slave then exits normally.

3.2 Example 2: Using the Master-Slave Interface

The PVM module provides a higher level interface to support the master-slave paradigm for distributed
computations. The symbols associated with this interface have the pvm ms prefix to distinguish them
from those symbols associated with the PVM package itself.

The pvm ms interface provides a means for handling computations which consist of a predetermined
list of tasks which can be performed by running arbitrary slave processes which take command-line
arguments. The interface provides a high degree of robustness, allowing one to add or delete hosts
from the PVM while the distributed process is running and also ensuring that the task list will be
completed even if one or more slave hosts fail (e.g. crash) during the computation. Experience has
shown that this failure tolerance is surprisingly important. Long-running distributed computations

12 Chapter 3. Examples

experience failure of one or more hosts with surprising frequency and it is essential that such failures
do not require restarting the entire distributed computation from the beginning.

Scripts using this interface must initialize it by loading the pvm ms package via, e.g.

require ("pvm_ms");

As an example of how to use this interface, we examine the scripts master and slave.

3.2.1 The master program

The master script first builds a list of tasks each consisting of an array of strings which provide the
command line for each slave process that will be spawned on the PVM. For this simple example,
the same command line will be executed a specified number of times. First, the script constructs
the path to the slave executable, (Slave Pgm), and then the command line (Cmd), that each slave
instance will invoke. Then the array of tasks is constructed:

variable pgm_argvs = Array_Type[N];

variable pgm_argv = [Slave_Pgm, Cmd];

pgm_argvs[*] = pgm_argv;

The distribution of these tasks across the available PVM is automatically handled by the pvm ms

interface. The interface will simultaneously start as many tasks as possible up to some maximum
number of processes per host. Here we specify that a maximum of two processes per host may run
simultaneously and then submit the list of tasks to the PVM:

pvm_ms_set_num_processes_per_host (2);

exit_status = pvm_ms_run_master (pgm_argvs);

As each slave process is completed, its exit status is recorded along with any messages printed to
stdout during the execution. When the entire list of tasks is complete, an array of structures is
returned containing status information for each task that was executed. In this example, the master
process simply prints out this information.

3.2.2 The slave program

The slave process in this example is relatively simple. Its command line arguments provide the task
to be completed. These arguments are then passed to pvm ms run slave

pvm_ms_run_slave (__argv[[1:]]);

which spawns a subshell, runs the specified command, communicates the task completion status to
the parent process and exits.

Chapter 4

Master-Slave Function Reference

4.1 pvm ms kill

Synopsis

Send a ”task complete” message to a specific task

Usage

pvm ms kill (Int Type mtid, Int Type stid)

Description

This function may be used to send a ”task complete” message to a specific PVM process. The
first argument gives the task identifier of the destination process. The second argument gives
the task identifier of the sending process.

Example

tid = pvm_mytid ();

ptid = pvm_parent ();

pvm_ms_kill (ptid, tid);

See Also

4.4 (pvm ms slave exit)

4.2 pvm ms set num processes per host

Synopsis

Set the maximum number of simultaneous processes per host

Usage

pvm ms set num processes per host (Int Type num processes)

13

14 Chapter 4. Master-Slave Function Reference

Description

This function is used to set the maximum number of simultaneous processes per host. The
master process normally runs as many simultaneous processes as possible; by setting the
maximum number of simultaneous processes per host, one can limit the processing load per
host.

Example

pvm_ms_set_num_processes_per_host (2);

See Also

4.6 (pvm ms run master)

4.3 pvm ms set debug

Synopsis

Set the debug flag

Usage

pvm ms set debug (Int Type debug)

Description

This function may be used to control whether debugging information is printed out during
execution. Debugging information is printed if the flag is non-zero.

Example

pvm_ms_set_debug (1);

See Also

4.2 (pvm ms set num processes per host)

4.4 pvm ms slave exit

Synopsis

Cause a normal exit of a slave process from the PVM

Usage

pvm ms slave exit (Int Type exit status)

Description

To exit the PVM, a slave process calls this function to send its exit status to the parent process
and to notify the local pvmd of its exit.

Example

pvm_ms_slave_exit (exit_status);

See Also

4.5 (pvm ms run slave)

4.5. pvm ms run slave 15

4.5 pvm ms run slave

Synopsis

Execute the slave’s assigned task in a subshell, then exit the PVM

Usage

pvm ms run slave (String Type argv[])

Description

A slave process calls this function to run a command in a subshell and then exit the PVM.
The command line is constructed by concatenting the elements of an array of strings, argv,
delimited by spaces. The integer return value from the system call provides the exit status for
the slave process. After sending this value to its parent process, the slave notifies the PVM
and exits.

Example

pvm_ms_run_slave (argv);

See Also

4.4 (pvm ms slave exit)

4.6 pvm ms run master

Synopsis

Submit a list of tasks to the PVM

Usage

Struct Type exit status[] = pvm ms run master (String Type pgms[])

Description

This function is used to submit a managed list of tasks to the PVM. The task list manager will
try to ensure that all tasks are completed and, upon completion of the task list, will return an
array of structures containing information about the results of each task.

Example

To run the Unix command ps xu on a number of different hosts:

variable slave_argv = Array_Type[n];

slave_argv[*] = ["ps", "axu"];

exit_status = pvm_ms_run_master (slave_argv);

See Also

4.7 (pvm ms add new slave)

16 Chapter 4. Master-Slave Function Reference

4.7 pvm ms add new slave

Synopsis

Add a new slave to the managed list

Usage

pvm ms add new slave (String Type argv[])

Description

This function may be used to add a new slave process while pvm ms run master() is running,
usually as a result of handling a message.

Example

pvm_ms_add_new_slave ("vex");

See Also

4.6 (pvm ms run master)

4.8 pvm ms set message callback

Synopsis

Set a callback for handling user-defined messages

Usage

pvm ms set message callback (Ref Type func)

Description

This function may be used to handle user-defined messages be sent from slave processes back
to the master process.

Example

static define handle_user_message (msgid, tid)

{

switch (msgid)

{

case USER_SLAVE_RESULT:

recv_results (tid);

start_task (tid);

}

{

case USER_SLAVE_READY:

start_task (tid);

}

{

% default:

return 0;

4.9. pvm ms set slave exit failed callback 17

}

return 1;

}

pvm_ms_set_message_callback (&handle_user_message);

See Also

4.11 (pvm ms set idle host callback), 4.9 (pvm ms set slave exit failed callback)

4.9 pvm ms set slave exit failed callback

Synopsis

Set a hook to be called when a slave exits on failure

Usage

pvm ms set slave exit failed callback (Ref Type func)

Description

This function may be used to have the master process perform a specified action whenever a
slave process exits without having completed its assigned task.

This is primarily useful in the context where each command-line submitted to
pvm ms run master represents a task which itself communicates with the PVM, performing
potentially many additional tasks which are independently managed by the process that called
pvm ms run master.

For example, consider a case in which initialization of slave processes is very expensive but,
once initialized, a single slave process may perform many tasks. In this case, the master process
may spawn a small number of slaves and then repeatedly send each slave a task to perform.
Each slave performs its task, sends the result to the master, and then waits for another task.
The managing process must keep track of which tasks have been completed and which remain.
If a slave exits while working on a task, it is important that the manager process be notified
that that task in progress was not completed and that it should be reassigned to another slave.

Example

static define slave_exit_failed_callback (msgid, tid)

{

variable t = find_task_tid (tid);

if (orelse {t == NULL} {t.status == FINISHED})

return;

% mark the unfinished task "READY" so that it will

% be assigned to another slave

t.tid = -1;

t.status = READY;

}

18 Chapter 4. Master-Slave Function Reference

pvm_ms_set_slave_exit_failed_callback (&slave_exit_failed_callback);

See Also

4.8 (pvm ms set message callback)

4.10 pvm ms set slave spawned callback

Synopsis

Set the slave spawned callback hook

Usage

pvm ms set slave spawned callback (Ref Type func)

Description

This function may be used to specify a callback function to be called whenever a slave process
has been spawned. The callback function will be called with three arguments: the slave task
id, the name of the host running the slave process, and an array of strings representing the
argument list passed to the slave.

Example

static define slave_spawned_callback (tid, host, argv)

{

vmessage ("Slave running %s spawned on %s with task-id %d",

argv[0], host, tid);

}

pvm_ms_set_slave_spawned_callback (&slave_spawned_callback);

See Also

4.8 (pvm ms set message callback)

4.11 pvm ms set idle host callback

Synopsis

Set the idle host hook

Usage

pvm ms set idle host callback (Ref Type func)

Description

This function may be used to specify a callback function to be called whenever a new host is
added to the virtual machine.

Example

4.12. pvm ms set hosts 19

static define idle_host_callback ()

{

loop (Max_Num_Processes_Per_Host)

{

variable slave_argv = build_slave_argv (0);

pvm_ms_add_new_slave (slave_argv);

}

}

pvm_ms_set_idle_host_callback (&idle_host_callback);

See Also

4.8 (pvm ms set message callback)

4.12 pvm ms set hosts

Synopsis

Set list of hosts to use

Usage

pvm ms set hosts (String Type hosts[])

Description

This function may be used to specify which hosts will be used to perform distributed calcula-
tions. The default is to use all hosts in the current PVM.

Example

pvm_ms_set_hosts (["vex", "pirx", "aluche"]);

See Also

5.11 (pvm addhosts)

20 Chapter 4. Master-Slave Function Reference

Chapter 5

PVM Module Function Reference

5.1 pvm send obj

Synopsis

Pack and send data objects

Usage

pvm send (Int Type tid, Int Type msgid, object [,...])

Description

This function is much like pvm psend except that it sends additional type information with
each object. Using this function paired with pvm recv obj simplifies sending aggregate data
objects such as structures and removes the need for the receiver to specify datatypes explicitly.

Example

To send a S-lang structure to another process:

variable obj = struct {name, x, y, data};

...

pvm_send_obj (tid, msgid, obj);

See Also

5.2 (pvm recv obj), 5.10 (pvm psend), 5.9 (pvm unpack)

5.2 pvm recv obj

Synopsis

Receive data objects from pvm send obj

Usage

obj = pvm recv obj ()

21

22 Chapter 5. PVM Module Function Reference

Description

This function receives an object sent by pvm send obj and returns a slang object of the same
type that was sent. It simplifies sending aggregate data types such as structures.

Example

To receive a S-lang object sent by another process via pvm send obj:

obj = pvm_recv_obj ();

See Also

5.1 (pvm send obj), 5.10 (pvm psend), 5.9 (pvm unpack)

5.3 pvm config

Synopsis

Returns information about the present virtual machine configuration

Usage

Struct Type = pvm config ()

Description

See the PVM documentation.

Example

h = pvm_config ();

See Also

5.4 (pvm kill)

5.4 pvm kill

Synopsis

Terminates a specified PVM process

Usage

pvm kill (Int Type tid)

Description

See the PVM documentation.

Example

pvm_kill (tid);

See Also

5.3 (pvm config)

5.5. pvm initsend 23

5.5 pvm initsend

Synopsis

Clear default send buffer and specify message encoding

Usage

bufid = pvm initsend (Int Type encoding)

Description

See the PVM documentation.

Example

bufid = pvm_initsend (PvmDataDefault);

See Also

5.7 (pvm send)

5.6 pvm pack

Synopsis

Pack the active message buffer with arrays of prescribed data type

Usage

pvm pack (object)

Description

See the PVM documentation.

Example

pvm_pack (x);

See Also

5.9 (pvm unpack)

5.7 pvm send

Synopsis

Immediately sends the data in the active message buffer

Usage

pvm send (Int Type, tid, Int Type msgid)

Description

See the PVM documentation.

24 Chapter 5. PVM Module Function Reference

Example

pvm_send (tid, msgid);

See Also

5.8 (pvm recv)

5.8 pvm recv

Synopsis

Receive a message

Usage

bufid = pvm recv (Int Type tid, Int Type msgtag)

Description

See the PVM documentation.

Example

bufid = pvm_recv (tid, msgtag);

See Also

5.7 (pvm send)

5.9 pvm unpack

Synopsis

Unpack the active message buffer into arrays of prescribed data type

Usage

item = pvm unpack (Int Type type id, Int Type num)

Description

See the PVM documentation.

Example

item = pvm_unpack (type, num);

See Also

5.6 (pvm pack)

5.10. pvm psend 25

5.10 pvm psend

Synopsis

Pack and send data

Usage

pvm psend (Int Type tid, Int Type msgid, object [,...])

Description

See the PVM documentation.

Example

pvm_psend (tid, msgid, data);

Notes

Unlike the pvm send function in the PVM library, this function does not operate asyn-
chronously.

See Also

5.7 (pvm send), 5.5 (pvm initsend), 5.6 (pvm pack), 5.8 (pvm recv)

5.11 pvm addhosts

Synopsis

Add one or more hosts to the PVM server

Usage

Int Type[] = pvm addhosts (String Type[] hosts)

Description

See the PVM documentation.

Example

tids = pvm_addhosts (["vex", "verus", "aluche"]);

See Also

5.11 (pvm addhosts), 5.3 (pvm config), 5.12 (pvm delhosts)

5.12 pvm delhosts

Synopsis

Delete one or more hosts from the PVM server

Usage

pvm delhosts (String Type[] hosts)

26 Chapter 5. PVM Module Function Reference

Description

See the PVM documentation.

Example

pvm_delhosts (["vex", "verus"]);

See Also

5.12 (pvm delhosts), 5.3 (pvm config), 5.4 (pvm kill)

Chapter 6

Module Symbols Lacking

Documentation

Although many more low-level PVM intrinsic functions are provided by the S-Lang module, not all
of S-Lang interfaces have been documented. See the PVM documentation for information on the
following functions:

pvm_delhost

pvm_export

pvm_freebuf

pvm_freecontext

pvm_getcontext

pvm_newcontext

pvm_setcontext

pvm_getopt

pvm_nrecv

pvm_sendsig

pvm_tidtohost

pvm_setopt

pvm_config

pvm_getrbuf

pvm_getsbuf

pvm_halt

pvm_tasks

pvm_kill

pvm_mstat

pvm_pstat

pvm_mcast

pvm_addhost

pvm_archcode

pvm_probe

pvm_bufinfo

pvm_notify

pvm_unpack

pvm_send

27

28 Chapter 6. Module Symbols Lacking Documentation

pvm_recv

pvm_pack

pvm_initsend

pvm_exit

pvm_mytid

pvm_parent

pvm_spawn

pvm_barrier

pvm_getinst

pvm_bcast

pvm_gettid

pvm_gsize

pvm_joingroup

pvm_lvgroup

pvm_settmask

pvm_tev_mask_init

pvm_tev_mask_set

pvm_sigterm_enable

Similarly, the following PVM intrinsic constants are provided by the S-Lang module but are docu-
mented only through the PVM documentation.

PvmDataDefault

PvmDataRaw

PvmDataInPlace

PvmDataTrace

PvmTaskDefault

PvmTaskHost

PvmTaskArch

PvmTaskDebug

PvmTaskTrace

PvmMppFront

PvmHostCompl

PvmNoSpawnParent

PvmTaskExit

PvmHostDelete

PvmHostAdd

PvmRouteAdd

PvmRouteDelete

PvmNotifyCancel

PvmRoute

PvmDontRoute

PvmAllowDirect

PvmRouteDirect

PvmDebugMask

PvmAutoErr

PvmOutputTid

PvmOutputCode

PvmTraceTid

PvmTraceCode

PvmTraceBuffer

29

PvmTraceOptions

PvmTraceFull

PvmTraceTime

PvmTraceCount

PvmFragSize

PvmResvTids

PvmSelfOutputTid

PvmSelfOutputCode

PvmSelfTraceTid

PvmSelfTraceCode

PvmSelfTraceBuffer

PvmSelfTraceOptions

PvmShowTids

PvmPollType

PvmPollConstant

PvmPollSleep

PvmPollTime

PvmOutputContext

PvmTraceContext

PvmSelfOutputContext

PvmSelfTraceContext

PvmNoReset

PvmTaskSelf

PvmTaskChild

PvmBaseContext

PvmMboxDefault

PvmMboxPersistent

PvmMboxMultiInstance

PvmMboxOverWritable

PvmMboxFirstAvail

PvmMboxReadAndDelete

PvmMboxWaitForInfo

PvmOk

PvmBadParam

PvmMismatch

PvmOverflow

PvmNoData

PvmNoHost

PvmNoFile

PvmDenied

PvmNoMem

PvmBadMsg

PvmSysErr

PvmNoBuf

PvmNoSuchBuf

PvmNullGroup

PvmDupGroup

PvmNoGroup

PvmNotInGroup

PvmNoInst

PvmHostFail

30 Chapter 6. Module Symbols Lacking Documentation

PvmNoParent

PvmNotImpl

PvmDSysErr

PvmBadVersion

PvmOutOfRes

PvmDupHost

PvmCantStart

PvmAlready

PvmNoTask

PvmNotFound

PvmExists

PvmHostrNMstr

PvmParentNotSet

PvmNoEntry

PvmDupEntry

TEV_MCAST

TEV_SEND

TEV_RECV

TEV_NRECV

	Introduction to the PVM Module
	Using the PVM Module
	Examples
	Example 1: A Simple Hello World Program
	The hello_master program
	The hello_slave program

	Example 2: Using the Master-Slave Interface
	The master program
	The slave program

	Master-Slave Function Reference
	pvm_ms_kill
	pvm_ms_set_num_processes_per_host
	pvm_ms_set_debug
	pvm_ms_slave_exit
	pvm_ms_run_slave
	pvm_ms_run_master
	pvm_ms_add_new_slave
	pvm_ms_set_message_callback
	pvm_ms_set_slave_exit_failed_callback
	pvm_ms_set_slave_spawned_callback
	pvm_ms_set_idle_host_callback
	pvm_ms_set_hosts

	PVM Module Function Reference
	pvm_send_obj
	pvm_recv_obj
	pvm_config
	pvm_kill
	pvm_initsend
	pvm_pack
	pvm_send
	pvm_recv
	pvm_unpack
	pvm_psend
	pvm_addhosts
	pvm_delhosts

	Module Symbols Lacking Documentation

