v1.0
Generic Format for Sequence Data

2/11/2007

Draft

2/11/2007

11th February 2007

Generic Format for Sequence Data

Version 1.0
Background

This document describes a machine and technology independent format for storing DNA sequence data and associated quality values. This document is preliminary and subject to change.

Contacts

Change history

The following table shows the change history for this format.

	Version
	Date
	Author
	Comments

	0.1
	15 Oct 2006
	
	Original content.

	0.15
	29th Oct 2006
	
	

	0.2
	13th Nov 2006
	
	Modified per comments received at Nov 2nd telecon.

	0.21
	26th Nov 3006
	
	Modified per comments received by e-mail. Incorporated Read Header and ZTR format.

	0.3
	11th Dec 2006
	
	Modified per comments received at Dec 7th telecom

	1.0 DRAFT
	9th Jan 2007
	
	Version 1.0 for approval

	1.0 DRAFT
	28th Jan 2007
	
	Version 1.0 revised for approval

	1.0
	11th Feb 2007
	
	Approved version

Table of contents
51. Overview

1.1 Scope and purpose
5
2. References
6
3. Terms, definitions, and notation
7
3.1 Conformance levels
7
3.2 Glossary of terms
7
4. Abbreviations and acronyms
8
5. Requirements
9
6. Format Specification
10
6.1 General
10
6.1.1 Strings
10
6.2 Container Block Header
11
6.3 XML Block
11
6.4 Data Block Header
11
6.5 Data Block
12
6.5.1 Read Header
12
6.5.2 ZTR Blob
12
6.5.3 Unique Read Id
13
6.6 Index Block
15

List of figures

10Figure 6.1—A single container

List of tables

9Table 5.1—Format Requirements

Table 6.1—Container Block Header Format
11
Table 6.2—Data Block Header Format
11
Table 6.3—Read Header Format
12
Table 6.4— Manufacturer Unique Read Identifier
13
Table 6.5— Centre Encrypted Unique Read Identifier
14
Table 6.6—Index Block Format
15

Overview

1.1 Scope and purpose

Scope: This document describes a format for storing nucleic acid sequence information. The format is intended to be machine and technology independent.

Purpose: This document has been created to capture the details of the format as proposed by the Short Sequence Reads working group (SSRWG). Hence, the document acts as a means of disseminating the format to additional parties.

2. References

[R1] IUPAC Nucleotide Code - IUB (Nomenclature Committee, 1985, Eur. J. Biochem. 150; 1-5).

[R2] Brent Ewing, LaDeana Hillier, Michael C. Wendl, and Phil Green. Base-calling of automated sequencer traces using PHRED. I. Accuracy assessment. 1998. Genome Research 8:175-185.

[R3] Brent Ewing and Phil Green Base-calling of automated sequencer traces using PHRED. II. Error probabilities. 1998. Genome Research 8:186-194

[R4] Extensible Markup Language (XML) 1.0 (Fourth Edition) W3C Recommendation 16 August 2006, Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, François Yergeau eds.

[R5] ZTR: a new format for DNA sequence trace data . James K. Bonfield and Rodger Staden. Bioinformatics 18:3-10
3. Terms, definitions, and notation

3.1 Conformance levels

Several keywords are used to differentiate between different levels of requirements and optionality, as follows:

expected: Describe the behavior of the hardware or software in the design models assumed by this specification. Other hardware and software design models may also be implemented.
may: Indicates a course of action permissible within the limits of the standard with no implied preference (“may” means “is permitted to”).
shall: Indicates mandatory requirements strictly to be followed in order to conform to the standard and from which no deviation is permitted (“shall” means “is required to”).
should: An indication that among several possibilities, one is recommended as particularly suitable, without mentioning or excluding others; or that a certain course of action is preferred but not necessarily required; or that (in the negative form) a certain course of action is deprecated but not prohibited (“should” means “is recommended to”).
3.2 Glossary of terms

byte: Eight bits of data, used as a synonym for octet.
Base caller: A program used to identify the bases in a sequence read from the data generated by a sequencing machine.
Big endian: Indicates that the byte order for an integer stored in multiple bytes is most significant byte first.
Read: A sequence of nucleic acids. Usually refers to a sequence generated by a sequencing machine.
Flow traces: Sequence read information generated by certain types of sequencing machines.
4. Abbreviations and acronyms

This document contains the following abbreviations and acronyms:

CH

Container Header

DB

Data Block

DBH
Data Block Header
DNA
Deoxyribose Nucleic Acid

IB

Index Block

ID

identifier

NCBI
National Centre for Biotechnology Information

PHRED

RH

Read Header

URL
Uniform Resource Locator

UTF-8
8-bit Universal Character Set/Unicode Transformation Format

XML
eXtensible Markup Language

5. Requirements

The standard has been developed to fulfill the following requirements

Table 5.1—Format Requirements

	Requirement Id
	Requirement
	Reference

	RQ-1
	The standard shall be open.
	

	RQ-2
	The standard shall have a streamable format
	

	RQ-3
	The standard should allow data to be stored in an efficient manner (i.e. consume the least amount of disk space).
	

	RQ-3
	The standard shall support random access to the data file.
	

	RQ-4
	The standard shall not require experimental information.
	

	RQ-5
	The standard shall support individual reads and sets of multiple reads.
	

	RQ-6
	The standard will support a unique identifier for each read.
	

	RQ-7
	Multi-byte order shall be big endian.
	

	RQ-8
	The standard shall support the storage of reads from different platforms in the same file.
	

6. Format Specification

6.1 General

A data file is comprised of one or more containers. Each container is comprised of several blocks of different types that have a specific order.

Container Header (CH) – The first block in a container is the Container Header. There is only one such block per container and it contains general information about the container.

XML Block – The CB may be followed by an XML (R-4).

Data Block Header (DBH) – The Data Block Header is followed by one or more Data Blocks. It contains information common to the following Data Blocks.

Data Block (DB) – The Data Blocks contain the actual sequence data and associated quality values. Each Data Block contains information about a single read. Data Blocks utilize the ZTR format (R-5) and comprise a Read Header (RH) and a ZTR blob.

Index Block (IB) – The index block is an optional block that contains a hash based index. The index provides a lookup of the location of every read in the container.

The following figure provides an example of a container.

[image: image1.wmf]CH

D

BH

DB

DBH

DB

DB

DB

IB

(

optional

)

XML Block

(

optional

)

Figure 6.1—A single container

A single file may contain several container structures. Each container is independent and thus containers can be added or removed from the file without disrupting the integrity of the file.

6.1.1 Strings

Strings are specified either as fixed length (length indicated in square brackets) or as variable length (indicated by an asterix, ‘*’). For variable length strings, the first byte contains an unsigned int that indicates the number of characters in the string and hence the number of bytes that follow the unsigned int. If a string is optional and no value is to be stored, the length is specified as zero.

6.2 Container Header

The Container Header contains general information about the file. The header includes information about the basecaller used to create call bases of the read. A consequence of this aspect of the format is that a single container may only contain reads called by the same base caller and hence all the reads will (likely) be generated by a single technology. It is not anticipated that the same read will be repeated in multiple containers called by different base callers. Since a single file may contain multiple containers, this limitation on containers is not a great encumbrance to the format.

Table 6.1—Container Header Format

	Field
	Description
	Type
	Value

	blockType
	The type of block.
	char[4]
	SSRF

	version
	The version of the standard.

	char *
	1.0

	ContainerType
	The type of blob stored in this container. The only supported value is ‘Z’ for ZTR.
	char[1]
	‘Z’

	baseCaller
	The name of the base caller used to call the read.
	char *
	

	baseCallerVersion
	The version of the base caller
	char *
	

	bytesToFirstDataBlock
	The number of bytes from the start of this block to the first data block header
	uint 32
	

	bytesToIndexBlock
	The number of bytes from the start of this block to the index block header. If the index is not present, the value of this field defaults to 0.
	uint 32
	

6.3 XML Block

The XML Block is optional. If present, it is block of UTF-8 characters in XML format (R-4). There are no reserved definitions for the XML block at this time.

6.4 Data Block Header

The Data Block Header contains information common to the next series of Data Blocks.

Table 6.2—Data Block Header Format

	Field
	Description
	Type
	Value

	blockType
	The type of block.
	char[1]
	H

	bytesToNextBlock
	The number of bytes to skip to the next DBH or to the end of the container (if this is the last DBH in this container). The bytes are counted from the start of this block.
	uint 32
	

	uniqueIdPrefix
	All reads in the data block header have the same unique id prefix. The prefix is a variable length string and may be zero bytes.
	char *
	

	ztrHeaderBlobSize
	A ZTR header that is common to all reads in this data block. This field indicates its size. The blob is optional and the size is zero if it is not present.
	uint 32
	

	ztrHeaderBlob
	The ZTR header blob
	*
	

6.5 Data Block

Each data blocks is comprised of a Read Header and followed by a ZTR blob.

6.5.1 Read Header

Table 6.3—Read Header Format

	Field
	Description
	Type
	Value

	blockType
	The type of block.
	char[1]
	R

	readId
	The readId is a variable length string. When combined with the uniqueIdPrefix, it yields the unique read id.
	char *
	

	ztrBlobSize
	The size of the ZTR blob. The ZTR blob contains the actual information for the read.
	uint 32
	

	ztrBlob
	The ZTR blob.
	*
	

6.5.2 ZTR Blob

The ZTR Blob is comprised of several ZTR chunks. For details of the ZTR format refer to http://staden.sourceforge.net/manual/formats_unix_12.html. Version 1.0 of this format support ZTR version 1.2.
6.5.2.1 Mapping Sequence Concepts to ZTR chunk Types

The following subsections describe how the different ZTR chunk types are used for different types of data.

6.5.2.1.1 Sanger Sequence Traces

This type of data is stored according to existing details of the ZTR specification. The raw data is stored using either 4 SAMP4 chunks or a single SMP4 chunk.

6.5.2.1.2 Flow Traces

Additional chunk types are required to store Flow Traces.

6.5.2.1.3 Single Value per Base

The raw data is stored using a single SAMP4 chunk.

6.5.2.1.4 Four Values per Base

The raw data is stored using either 4 SAMP4 chunks or a single SMP4 chunk.

6.5.2.1.5 Base Calls

Base calls are stored using the BASE chunk.

6.5.2.1.6 Quality Values

The format allows two types of errors to be stored: base substitutions and base insertions. The probability of a base substitution may be stored as PHRED values or as Solexa-style values using the CNF4 ZTR chunk type. The metadata field in CNF4 chunk is used to differentiate between the two styles. Solexa style probabilities are stored using the following equation

value = 10 * log10 (p(X)/(1-p(X))) where X is the probability of substitution.

A format for storing the probability of a base insertion (or deletion) will be defined at a later time.

6.5.3 Unique Read Id

Each read is assigned a unique read identifier. The unique read id is globally unique i.e. any two reads anywhere in the world are guaranteed to have different unique read id.

When creating the container, the unique read is split into two parts: the unique identifier prefix in the Data Block Header and the readId in the Read Header. Both the unique id prefix and the read id are variable length strings. Thus, the unique id prefix may be zero length, in which case the complete unique read id is stored in the readId field of the RH or the readId may be zero length, in which case, the entire unique read id is stored in the unique id prefix.

The prefix provides a mechanism for reducing the number of bytes required to store the unique read id by separating the prefix common to all reads in a set of DBs. It also allows faster searches through the file for reads with a specific prefix.

Since the split between the two parts of the unique read id is arbitrary, it is allowable for a read to have different splits between the two parts when that read is copied to another container.

The following formats for identifiers utilize the type “String”. When these identifiers are encoded into the DBH and DB, they are encoded as type char *.

6.5.3.1 Manufacturer Read Ids

The unique read identifiers generated by the manufacturer are comprised of the following fields:

Table 6.4— Manufacturer Unique Read Identifier

	Field
	Description
	Type
	Value

	manufactuerId
	Unique id for each manufacturer to avoid namespace clashes,
	char [2]
	

	uniqueCode
	These bytes are left to the manufacturer to assign a code that guarantees each read generated by their machines is globally unique.
	string
	

Each manufacturer is responsible for guaranteeing that the unique code is globally unique for reads generated by their machines.

6.5.3.2 Manufacturer Codes

The following codes are assigned to each manufacturer.

45 - 454

AB – ABI

HE - Helicos

IL – Illumina/Solexa

6.5.3.3 Encrypted Read Ids

Read ids generated by the manufacturer may contain operational information about the read (e.g. time of run, position of read on plate). Read ids may be encrypted to prevent disclosure of this information.

To avoid namespace clashes between public unique read ids and encrypted reads ids, encrypted reads ids are prefixed by a code for the encrypting site. The code may be the URL of the encrypting site or the NCBI registered trace repository identifier of the encrypting site.
Table 6.5— Centre Encrypted Unique Read Identifier

	Field
	Description
	Type
	Value

	centreId
	Unique id for each centre to avoid namespace clashes,
	String
	

	uniqueCode
	These bytes are left to the centre to assign a code that guarantees each read generated by their machines is globally unique.
	String
	

Each centre id is responsible for guaranteeing that the unique code is globally unique for reads generated by their machines. If a centre does not wish to encrypt the id, it may simply use the manufacturer generated id.

Index Block

The Index Block provides a lookup hash for every read in the block. Containers with indexes cannot be larger than 232 bytes. Once a DB for a read is identified, the corresponding DBH is the one that precedes the location of the DB in the container.

Table 6.6—Index Block Format

	Field
	Description
	Type
	Value

	blockType
	The type of block.
	char[1]
	I

	hashFunction
	The function used to hash this index.
	char *
	

	hashSize
	The length of hash string.
	uint 8
	

	numberOfDBHs
	The number of DBHs in the container
	uint 32
	

	List

	
	bytesToDBH
	The number of bytes from the start of the container to a DBH
	uint 32
	

	End of List

	List

	
	readIdHash
	The hash of the unique read identifier
	
	

	
	bytesToDB
	The number of bytes from the start of the container to the DB containing the read.
	uint 32
	

	End of List

Page 8

This is an unapproved draft, subject to change.

Page 7

This is an unapproved draft, subject to change.

_1231498197.vsd
DB

DBH

DB

DB

DB

CH

DBH

IB (optional)

XML Block (optional)

